Human Eye Sampling

Cartesian image ----- Log-Polar representation ----- Retinal representation

Sampling

- Rough Idea: Ideal Case

Sampling

- Rough Idea: Actual Case
- Can't realize an ideal point function in real equipment
- "Delta function" equivalent has an area
- Value returned is the average over this area

Projection through a pixel

Digitized 35mm Slide or Film

Image irradiance is the average of the scene radiance over the area of the surface intersecting the solid angle!

Mixed Pixel Problem

\square

Signal Quantization

- Goal: determine a mapping from a continuous signal (e.g. analog video signal) to one of K discrete (digital) levels.

Quantization

- $\mathrm{I}(\mathrm{x}, \mathrm{y})=$ continuous signal: $0 \leq \mathrm{I} \leq \mathrm{M}$
- Want to quantize to K values $0,1, \ldots . \mathrm{K}-1$
- K usually chosen to be a power of 2 :

K: \#Levels	\#Bits
2	1
4	2
8	3
16	4
32	5
64	6
128	7
256	8

- Mapping from input signal to output signal is to be determined.
- Several types of mappings: uniform, logarithmic, etc.

$K=2$

$\mathrm{K}=16$

K=32

Choice of K

$\mathrm{K}=2$ (each color)

$\mathrm{K}=4$ (each color)

Digital X-rays

R
elj

Introduction to

Combuter Vision

Digital X-rays: 1 bit

Digital X-rays: 2 bits

Digital X-rays: 3 bit

R
elj

Gray Levels-Resolution

Trade Off

- More gray levels can be simulated with more resolution.
- A "gray" pixel:

- Doubling the resolution in each direction adds at least four new gray levels. But maybe more?

Pseudocolor

Introduction to

MRI

■

Choice of Function: Uniform

- Uniform sampling divides the signal range [0-M] into K equal-sized intervals.
- The integers $0, \ldots \mathrm{~K}-1$ are assigned to these intervals.
- All signal values within an interval are represented by the associated integer value.
- Defines a mapping:

Logarithmic Quantization

- Signal is $\log \mathrm{I}(\mathrm{x}, \mathrm{y})$.
- Effect is:

- Detail enhanced in the low signal values at expense of detail in high signal values.

Logarithmic Quantization

Quantization Curve

Logarithmic Quantization

Histogram Equalization

Brightness Equalization

- Two methods:
- Change the data (histogram equalization)
- Use a look up table (brightness or color remapping)

Look up tables

Maps Brightness Value -> RGB Color

- 0 -> $(1,0,0)$
- 1 -> $(0,1,0)$
- 2 -> $(0,0,1)$
- 3 -> $(0,1,1)$
- 255 -> (1, 1, 1)

Brightness Equalization

- Two methods:
- Change the data.
- Use a look up table.

Look up tables

Maps Brightness Value -> RGB Color

- 0 -> $(0,0,0)$
- 1 -> $(0,0,0)$
- 2 -> $(0,0,0)$
- 3 -> ($0,0,0$)
- 130-> (0,0,0)
- 131-> (.01, .01, .01)
- 132-> (.02,.02,.02)
- 200->($1,1,1$)
- 201->(1,1,1)
- 255 -> (1, 1, 1)

Brightness Equalization

Tesselation Patterns

Rectangular

Triangular

Typical

Spatial Frequencies

Image
Fourier Power Spectrum
$\xrightarrow{\text { one "unit" of distance }}$

Spatial Frequencies

Fourier Power Spectrum

Spatial Frequencies

Fourier Power Spectrum

Spatial Frequencies

Fourier Power Spectrum

Spatial Frequencies

Fourier Power Spectrum

Sampling efficiency

- Every sampling scheme captures some spatial frequencies but not others:
- Low frequency sampling doesn't capture the picket fence
- High frequency does.
- Which two-dimensional sampling scheme is most "efficient"?

Tesselation Patterns

Rectangular

Triangular

Typical

Sampling Grids

Retina

Cones in the fovea

Moving outward from fovea

All of them are cones!

Digital Geometry

l(i,j) (0,0)
\mid
i

- Neighborhood
- Connectedness

Pixel value $I(1, j)=\left\{\begin{array}{l}0,1 \text { Binary Image } \\ 0-\mathrm{K}-1 \text { Gray Scale Image } \\ \text { Vector: Multispectral Image }\end{array}\right.$

Connected Components

- Binary image with multiple 'objects'
- Separate 'objects' must be labeled individually

Finding Connected Components

- Two points in an image are 'connected' if a path can be found for which the value of the image function is the same all along the path.

P_{1} connected to P_{2}
P_{3} connected to P_{4}
P_{1} not connected to P_{3} or P_{4}
P_{2} not connected to P_{3} or P_{4}
P_{3} not connected to P_{1} or P_{2}
P_{4} not connected to P_{1} or P_{2}

Algorithm

- Pick any pixel in the image and assign it a label
- Assign same label to any neighbor pixel with the same value of the image function
- Continue labeling neighbors until no neighbors can be assigned this label
- Choose another label and another pixel not already labeled and continue
- If no more unlabeled image points, stop.

Who's my neighbor?

Example

Neighbor

- Consider the definition of the term 'neighbor'
- Two common definitions:

Four Neighbor

Eight Neighbor

- Consider what happens with a closed curve.
- One would expect a closed curve to partition the plane into two connected regions.

Computer Vision Alternate Neighborhood Definitions

Possible Solutions

- Use 4-neighborhood for object and 8-neighborhood for background
- requires a-priori knowledge about which pixels are object and which are background
- Use a six-connected neighborhood:

Digital Distances

- Alternate distance metrics for digital images

Euclidean Distance
$=\sqrt{(i-n)^{2}+(j-m)^{2}}$

City Block Distance
$=|i-n|+|j-m|$

Chessboard Distance
$=\max [|i-n|,|j-m|]$

